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We consider a simple two-dimensional layered automaton. Each processor in 
the automaton performs the same nonlinear, thresholdlike operation (so that 
the row-to-row evolution of the array can also be seen as the time development 
of a one-dimensional automaton). One row of the machine is reserved for input, 
another is singled out as output. We study the output space in detail, as restric- 
ted by the very wiring of the array, enumerating the output configurations, and 
characterizing them statistically. We demonstrate that input configurations flow 
to a set of zero measure in output space. The variations in output that are to be 
expected when input is subjected to perturbations are also examined. 

KEY WORDS: Cellular Automata; non-linear dynamics; scaling; fixed points. 

1. I N T R O D U C T I O N  

In many natural and artificial systems, decision capacity based upon com- 
plex computations is distributed throughout a network of components. 
This is true, among others, of parallel data processing systems, (1) the 
central and peripheral nervous systems, (2~ and biochemical as well as 
ontological development pathways. (3) The complication of these networks 
is such that, more often than not, a detailed description becomes both 
impractical and theoretically uninteresting. As against this, much can be 
learned from simplified models, and we propose in this paper to analyze in 
some detail the properties of such a model. Although the "majority model," 
as we call it, has been introduced in the context of developmental biology 
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(a detailed account of its relevance there was given in ref. 4a), its 
significance will be evident also in the framework of the so-called neural 
networks (4b'5) if we simply mention that its elements are threshold 
automata (6) connected in multiple layers, in rough analogy with the cerebal 
cortex. (2) Two of the layers are privileged in that they are considered 
respectively as the "input" and the "output" layers. 

Extensive work on automaton networks, classifying their dynamical 
properties, has been performed/7) In spite of this, we believe that our 
model is the first simple, geometrically regular system whose input-output 
mapping can be characterized analytically in such detail as has been 
achieved here. Previous analytical results, closely connected to ours, have 
been obtained mainly in the context of random systems. (8) In Section 2 the 
model is defined in detail, and we comment briefly on the complex 
phenomena it exhibits. In Section 3 we discuss the properties of the input- 
output mapping. We show that the mapping is many-to-one, i.e., inputs can 
be grouped into basins of attraction characterized by a given output. In 
Section 3.1 we enumerate all attractors and show how their number scales 
with the size of the system. This property is shown to be relevant for many 
other quantities as well. Section 3.2 is devoted to the analysis of the 
statistical structure of attractors; in particular, we describe the typical 
attractors in this way, using the methods of statistical mechanics (by 
typical, we mean all attractors save for a set of measure zero). In Sec- 
tion 3.3 we show that most inputs map, in fact, on atypical attractors. The 
atypical attractors to which typical inputs flow we call the accessible attrac- 
tors. In Section 3.4 we obtain bounds on the size of the accessible attractors 
and also calculate exactly the size of the largest attractors. Finally, in Sec- 
tion 4 we address briefly the question of the complicated interrelationships 
among some of the basins of attraction. We do this by analyzing the 
behavior of the output as the input is subjected to some diffusion process. 
Because of the complexity of the input-output mapping, even simple 
dynamics at the input level can lead to complicated behavior of the output. 

2. T H E  M A J O R I T Y  M O D E L  

The computer array we are considering has a layered structure. Each 
layer consists of N processors, or automata, which receive their inputs from 
the layer immediately above. The internal state of the processors on the top 
layer is fixed: this set of states we call collectively the "input" of the array. 
In the simplest version (different ones will be alluded to in the following 
sections) each automaton processes three quantities, transferred respec- 
tively from the above left, above center, and above right automata (see 
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Fig. la). The inputs are bits (0 or 1); the output of the individual 
automaton is determined according to the "majority rule": 

if ~ inputs ~< 1, then output = 0 

else output = 1 

This rule is typical of threshold automata; here the threshold is 1. 
Analogous processing occurs in all of the M layers of which the machine 
consists; the bits required on the sides are supplied in one of two ways: the 
boundary conditions are either fixed (the bits are set to, say, 0) or periodic. 
The states of the Mth  layer of processors we call the "output" of the array. 

As simple as this model may seem, it exhibits a surprising richness of 
behavior in its input-output relationship/4) As an illustration of this com- 
plexity, let us simply mention the fact (Fig. lb) that with fixed 0 boundary 
conditions, say, the input string I1 = {00101010100} leads to output O1 = 
{ 00000000000 } (provided M/> 5), while 12 = { 001011 l 0100 }, differing from 
11 by only one bit, leads to 02 = {00011111000}. There is a great variety of 
possible output states (their number decreases as M increases at fixed N); 
we term each Oi an "attractor" and the set of inputs {iji)} leading to Oi its 
basin of attraction. Section 3 is devoted to counting, mainly in the M ---, oe 
limit, all the possible attractors (whose number grows exponentially with 
N) and to determining the statistical structure and size of some basins of 
attraction. 

00101010100 

00010101000 

0000101 0000 

00000100000 

00000000000 

Fig. 1. 

0 0 1 0 1  

0 0 0 1 1  

0 0 0 1 1  

0 0 0 1 1  

0 0 0  

The majority rule. (a) A 

1 1 0 1 0 0  

1 1 1 0 0 0  
1 1 1 0 0 0  b 

1 1 1 0 0 0  
1 1 1 1 1 0 0 0  

finite array of majority rule processors. The state of the top 
processors (inputs) is forced to 0 or 1 as shown; each processor in the lower rows determines 
its own state as the one displayed by a majority of its three upper neighbors; the side 
processors (not depicted) are set to zero (b) Same array with input differing in one bit: five 
output  bits are switched to 1. 
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This multiplicity of attractors and their complicated relationships are 
reminiscent of the situation in spin glasses and random automaton 
networks. (8'9) Additionally, as demonstrated above, the system displays in 
certain circumstances a strong dependence (in output) on its input con- 
ditions. If we think for a moment of the successive layers as the states at 
successive times of a unique layer, then "sensitive dependence on input" 
translates into a "strong dependence on initial conditions," as prevalent on 
the strange attractors of chaotic systems. (1~ 

3. STATIC INPUT-OUTPUT PROPERTIES 

3.1. Number of Attractors and Scaling 

When the depth M of the machine tends to infinity, it is fairly easy to 
compute exactly the number of possible output configurations, or attrac- 
tors. Indeed, the result of successive applications of the majority rule can 
only be the disappearance of all isolated O's or l's. Thus, all we have to do 
is count the number of bit strings with no such isolated bits, and this will 
provides us with the number of possible output configurations. We 
illustrate the procedure for the case of periodic boundary conditions. This 
case has also been treated in ref. 11. The allowed attractors are then those 
strings that contain no isolated bits, save possibly for two identical isolated 
bits at each end. We begin by counting the number B N of strings which 
neither start nor end with isolated bits. This we can obtain easily by first 
evaluating recursively the number of strings A N that begin (at the left) with 
at least two identical bits, but may possibly end with one isolated 
(rightmost) bit. Assume indeed we have found the number of such strings 
with length N -  1, and that a given such string ends with a bit x (=  0 or 1). 
We now want to add a new bit to the right, say y. From the condition 
that there should be no isolated bit embedded in the new string, we 
find that if x = y, the addition of y is always permissible, while if x :~ y, 
the new N-string is allowed provided  x was not isolated, i.e., provided the 
( N -  1)-string ended with a pair. Thus, for instance, 

A N - A N = I + A  N - 2  ( la)  
0,0 - -  0,0 0,1 

where AoNb denotes the number of N-strings beginning with at least two a's 
and ending with at least one b. Also, 

A N __ A N -  1 A N 2 o , l -  o, 1 + o,o ( lb)  

and AN1,1 = A~,o, ANI.o ---- ANO,I by symmetry. We solve for the A N by going to 
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the variables SN=AN0,0+A6V.I,, DN=A0. 0N _ A ~ I ,  in terms of which (1) 
becomes 

s U = s  N 1 -~- sN-2  (2a) 

D N = D N -  1 _ D N 2 (2b) 

Note that (2a) defines the Fibonacci series. We look for a so lu t ion  
S N-= a x  N, D N =  b y  N, which yields 

S N = a l  --k a 2 

Initial conditions must now be supplied. For  N =  2, strings beginning with 
00 obviously also end with a 0; thus, A 2 - 1, A 2 = 0; on the other hand, 0 , 0 - -  0,1 

when N =  3, A3o, o-- 1 (namely 000), while A 3o,1= 1 (namely 001, which only 
e n d s  with an isolated 1). Thus, $2=  l, O 2= 1, and $ 3 =2 ,  D3=  0. This 
allows us to compute 

al = --~5 a2 = --al,  bl - ix/~ b2 = - b l  (4) 
' 3 ' 3 

One then obtains 
S N A V D x S N _ D u 

A N = A  N A N - = A  N - ( 5 a )  
o,o 1,1 = 2 ' o,1 1 , o -  2 

Now the B N are easily seen to be equal to the corresponding A N - l :  they 
result simply from repeating the rightmost bit, ensuring that the string 
begins a n d  ends with a pair. Thus, 

N __ N - -  1 (5b) Ba, a - Aa, . 

It is now a simple matter to obtain the number C N of atractors for a 
machine of width N. Certainly, all the 2(B~,o+ B~,I) N-strings are accep- 
table; however, we can take any of the B u - 2  (or N 2 0,0 Bl, 1 ) strings of length 
N - 2 ,  supplement them on both sides with ones (or zeros), and obtain an 
acceptable attractor. There are 2 B  x 2 such attractors. Finally, from any 
B N -  1 string, one can form an attractor by adding either 1 at the right or 0 0,1 
at the left (and similarly for the B N -  1 strings). This adds 4B~,F 1 strings to 1,0 

the count; thus 

C N = 2 [ B ~ . o  +BNo,1 --" BN-2o, o + 2BNo,1 ' + r o o d ( N -  1, 2)] (6a) 
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The last te rm represents the a t t rac tors  {0101...01} and {1010.. .10} 
present  in even-N machines  and not  included previously. These a t t rac tors  
cor respond  to inputs consisting of repeated {01} or { 10} substrings, which 
are reproduced  after an even n u m b e r  of levels, while yielding repeated 
{10}'s or {01 }'s, respectively, after an odd number  of levels. Equa t ion  (6a) 
is correct,  as can be checked by direct count ing on l a rge -M machines.  
Asymptot ical ly ,  for large N, we have 

It  m a y  be wor th  not ing that,  a l though bounda ry  condit ions can 
change the size of individual  a t t rac tors  drastically (see Section 3.4), they 
have little effect on the C~: thus, for N =  10, (6a) gives 124 at tractors ,  while 
in the case of fixed, all-0 b o u n d a r y  condit ions there are 117, but  with 
a - - s o m e t i m e s - - v e r y  different appearance .  

Fo r  large N, Eq. (6b) has an app rox ima te  extensive form. This is a 
ra ther  pervasive feature in our  model ,  as we now show. The phase space of 
the major i ty  machine  can be divided into sectors that  become  independent  
in the limit of infinite width and depth. This is because of the ~ 
proper ty :  two adjacent  0's or l 's  at input  are always p ropaga ted  (Fig. 2a). 

? ~ "~ 0 0 ? ? ? 

? ? ~ 0 0 ? ? 7 

7 ? ? 0 0 ? ? ~ 
o 

7 ~ 00 1 0 7 7  

) ~ 00 0 ? ~ 7 

~ ~ 00 0 ? ~ ? 

7 I I 0 I 01 7 

7 I I I 01 ? 7 

7 1 1 1 1 7 ? ~ 
Iz 

Fig. 2. "Canalization" in the majority machine. (a) Two adjacent zeros or ones are transmit- 
ted all the way to the bottom, irrespective of the states of the other bits (?). We speak of 
"frozen" layers in this case. (b) If a 01 couple is itself flanked by two zeros (at right and left), 
the states of the second and further layers are frozen (with a triplet of zeros). (c) A 1010 
group, flanked left and right by, say, two ones, leads to a frozen configuration starting from 
the third layer. 
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In order to understand the consequence of this for the structure of phase 
space, let us consider an infinitely deep and wide machine, and let us divide 
it in two by an imaginary vertical line. Two cases can exist: the twp bor- 
derline bits either are the same or are not. In the first case, they form a 00 
or 11 pair, which, according to the majority rule, is transmitted from layer 
to layer without changes: thus, in this instance, there is no interaction 
between the two halves: the number of states in phase space is simply mul- 
tiplicative, i.e., with self-explanatory notation, W(010)---We(O)WR(O). 
Consider now the situation where we have, say, a 0 bit on the left with a 1 
bit on the right. There are various possibilities. Suppose the configuration 
around the "joint" is now 0010; this generates a 000 triplet at the next level 
and we are back to the previous case (see Fig. 2b); similarly, mutatis 
mutandis, for 1011. Furthermore, 0011 generates two "propagating pairs," 
00 and 11, and again the two halves will behave independently of each 
other. Thus, W(00110)-~ WL(00) WR(10); W ( 1 0 [ l l ) _  WL(10 ) WR(ll), 
W(00] 11) = WL(00) WR(11). The only ambiguous situation is ... 1010 .... 
when the states of the left bits, say, can still influence the right-hand side. 
Here, too, however, partial decoupling occurs, since, e.g., after two layers 
... 110101 .... will yield ... 11... again (Fig. 2c). We see that, the deeper the 
machine, the less the relative importance of the interaction between the two 
halves becomes, since a larger fraction of states are effectively frozen at the 
lower levels. For depth M = 1, 1/2 of the total phase space of 2 N, N ~ 0(3 is 
"interaction-free." For M =  2, the "free" fraction goes up to 1/2 + 6/16 = 
7/8; for M = 3 ,  the corresponding number is 1 /2+6/16+6/64=31/32 ,  
and so on. We conclude that, the deeper the machine, the better the 
approximation that considers its phase space to be made up of the direct 
product of two independent halves. More generally, for M ~ oe we expect 
that, at the Mth  layer, a property W such as, say, the number of available 
states, will have the form W =  WL WR. Thus, one surmises 

W ~ w  N (7a) 

where w is W per bit, e.g., phase space per bit. 
In a different limit, that of N ~  0% M finite, the only bits that can 

possibly affect a given output bit form its "reverse light cone" (Fig. 3); since 
this is finite, we expect again that two halves of a machine behave in an 
approximately independent way, and the extensivity property should thus 
be quite generally valid. 

This conclusion can be extended rather simply into a scaling formula 
for certain quantities. Let f (R ,  N) be the probabili ty averaged over all 
input strings that if a certain number R of input bits are upset (inverted), 
the output remains unaltered. On grounds of the previous arguments, "half 
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~\I I 0 1 0 0 I//0 

0 1\\11 0 0 0/~ 0 
x / 

0 1 1 " 1 0 0 / 0 0 0  
\ / 

0 11 I"0/00 0 0 
Fig. 3. For a machine of finite depth and infinite width, correlations extend only over a finite 

fraction of the machine, delimited by the "reverse light cone." 

machines" can again be expected to behave more  or  less independently in 
this respect. We thus expect the function f to exhibit the following scaling 
behavior:  

f (R,  N)= [F(R/N)] u (7b) 

We see in Fig. 4 that  the function f is indeed of this form (7b), thus 
affording a sort of "law of corresponding states." 

A variety of quantities can be easily evaluated using the extensivity 
and scaling properties as seen above; we discuss other examples as we 
proceed. 

1.0 i i i i i t , , i 

o 
§ 
o o 

x + 013 

~176 +o 

x N = 8  

o N=10 

+ N= 12 

o N=14 

xo43 

O40 XO § cD 

Wc ~o +D 

I I I I I I I I I 

0 0.2 0.4 R/N 0.6 0.8 1.0 

Fig. 4. Starting from any input configuration, inverting a fraction R/N of the input bits will 
conserve the output configuration with a probability f~< 1. Shown is a plot of F = f  1IN for 
various values of N: the points fall on the same curve, in accordance with the scaling law (7) 
(see text). 
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3.2. Stat ist ical  S t ruc ture  of A t t rac tors  

In this section we demonstrate that for infinitely long chains all attrac- 
tors (up to a set of zero measure) have a certain statistical structure. In 
order to carry out this analysis, we consider a chain of N bits. An attractor 
is characterized by L segments of bits where each segment is composed of 
either zeros or ones, but not both, and is of length l~>2. Let nt be the 
number of times a segment of length I appears in this attractor. The set of 
integers {nt} satisfies the two constraints 

Z lnt = N (8a) 
l = 2  

~ nt = L (8b) 
l = 2  

Let ,Q{n,} be the entropy associated with the set {nt}. It is defined such 
that I - e  ~ yields the number of attractors that are characterized by {nt}. 
Simple combinatorial considerations give the following expression for I: 

L! 
I=-eO= -2 (9) 

n2?.n3?.--  

In the thermodynamic limit (N--+ ~ )  one has 

f2~-LlnL- ~ ntlnnt 
l - - 2  

In order to find the structure of a typical atractor in the thermodynamic 
limit (N--. oo), one has to determine the set {n~} that maximizes f2 subject 
to the two constraints (8). To do that we consider 

ff2=LlnL- X n t l n n t - ~  nl-~ ~ In t 
l = 2  / = 2  l = 2  

where e and /~ are Lagrange multipliers. Maximizing s with respect to nt 
we find 

nt=Ae-~t, / = 2 ,  3,.: (10) 

with 

A = e - ( ~ + l )  

where ~ and fl are determined (as functions of N and L) by the two con- 
straints (8). Thus, we have shown that a typical attractor (i.e., all attractors 
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up to a set of zero measure) are characterized by a particular distribution 
(10) of the number of segments n t. To complete the analysis, we use the 
distribution function (10) to rewrite the entropy f2 in terms of N and L. We 
then determine x ==-L/N by maximizing f2 as a function of x. Using (10), we 
find that 

f2 = N[fl + x ln(L/A ) ] 

With the use of the two constraints (8) one gets 

1 - y  
o 

where y = e -~. The entropy ~ is maximized by 

y_  , , ~ -  1 

2 

This yields 

and 

c 
x ~ - - = - -  

N 2x/~  
(11) 

n , = N \ - ~  j \ ~ j  (12) 

In summary, in the thermodynamic limit a typical attractor is characterized 
by segments of average length L/N given by (11). The number of segments 
of length 1 decreases exponentially with l according to the expression (12). 
One can easily check that the total number of attractors obtained in this 
way e ~ agrees, in the large-N limit, with the exact expression obtained in 
the previous section for arbitrary N. 

It is easy to see that in a typical attractor the segments are distributed 
in a statistically independendent way. In order to demonstrate this point, 
we consider a chain of L sites. On each site we define a variable si, which 
takes the values 2, 3,.... It represents the length of the ith segment in this 
chain. Consider, for example, the segment-segment correlation function. 
The number of configurations in which the il and i2 segments are of length 
11 and 12, respectively, is given by 

e~,~ = (L - 2)! - 2 
l"l 2 ! ' ' "  ( n i l -  1 ) ! . . .  (n12 - 1 ) ! . . .  
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Therefore, the joint probability of having segments of lengths l 1 and l 2 iS 
given by 

e o12_nh nlz ~ n ' l n '  z 
e ~ L L - 1  L L 

which is the product of the probabilities for ll and l 2 segments. 

3.3. A lmost  All Inputs F low to Atypical  At t ractors  

In this section we demonstrate that the entire input space (up to a set 
of zero measure) maps onto atypical attractors, that is, on a set of zero 
measure in atractor space. In order to carry out this analysis, we consider a 
typical input. A typical input is constructed by independently choosing bits 
0 or 1 with probability 1/2. Now, the configurations in input space that 
yield segments of length two in output are necessarily of the form 
... 110011... or ...001100 ... .  The probability for such input configurations 
is 

2(1/2) 6 = 1/32 

On the other hand, the probability to find a segment of length 2 in a 
typical output is 

- -  = - 0.382 
L 

Since a typical input does not, in this particular case, yield the typical out- 

put, we conclude that most inputs flow to an atypical portion of output 
space, which we call its accessible portion. 

3.4. Size of  the Largest At t ractor;  Size of the Accessible 
At t ractors  

The largest attractors (those output strings corresponding to the 
largest number of possible inputs) are of great interest in applications, since 
they represent those outputs that are least sensitive to input distortion, and 
this is often a desirable characteristic. 

For M ~ ~ ,  these large attractors are those corresponding to output 
{000...000} or {111... 111 }. It is easily seen that the basin of attraction of 
{000...000}, say, contains all input strings that have no adjacent l's (these 
would automatically appear in output). Let us remark that this problem 
can be put into one-to-one correspondence with the problem of counting 

822/51/5-6-4 
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the total number of attractors, which has been solved above. If we take any 
allowed output configuration, say {...0001100111...}, and construct the 
"dual" string by applying the exclusve-OR(XOR) operation to each pair of 
its bits, we obtain {...001010100...}, a member of the {00...00} attractor. 

Let us, as an example, evaluate the size G u of the {000...000} attrac- 
tor in the case of fixed, all-zero BC. The o n l y  condition on the relevant 
strings is that their l's are strictly isolated: there are two strings for N =  1 
(G1=2),  namely {0} and {1}, and three for S = 2 ,  i.e., {00}, {01}, and 
{10}. Furthermore, one N-string can always be built by adding a 0 to an 
(N-1)-s t r ing,  while a 1 may be added only to strings not ending with 1 
already. Thus, G N-~ G N - I - +  - G N 2, and the BC yield 

G N 3 + x ~ { l + x / - 5 ~  N - 3 + x / - 5  

The effect of the BC on the attractor can be drastic. Thus, for N =  10, 
(13) gives G1~ on the other hand, one can check that the 
{ 111... 111 } attractor, disfavored by the BC, has only 21 inputs to itself 
(note that 21 = G 1~ 4, and in general, the size of the all-1 attractors will 
G N - 4 ) ;  while with periodic BC both attractors comprise 121 input strings 
each. 

The size of the large attractors can in fact be calculated also for finite- 
depth machines. Thus, after one level of processing, the strings that flow to 
the {000...000} attractor are those where l's are framed by at last t w o  0's 
on each side: {...00100...} is allowed, but clearly {...00101...} is not. It is 
easy to count the input configurations obeying this condition; their number 
obeys the recursion relation for G N = G N-- 1 -t- G~- 3 A solution of the form 
a x  N yields a cubic equation whose solution is x =  1.466 ... .  Thus, 
GN~ (1.466...) N. At the second level, the input configurations that yield 
{000...000} are all those already counted at level 1, plus those where one 
observes {...0010100...}. The recursion equation becomes 

G N= G N-,  + G N-3 + G N-5 

The resulting fifth-order algebraic equation gives G~' ~ (1.570...)N. That the 
Gi ultimately converge to those given by the Fibonacci equation is clear, 
since the recursion relation for Gi, i >~ 2, is 

G N = G N - I + G N - 3  + . . .  + G N - 2 i  1 (14) 

and from this 

G N - 2 = G N - 3 +  ... +GN-2i  3 
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Subtracting these last two equations yields 

G ? =  G N- '  + a N - 2 _  G f - 2 , - 3  

and for i ~  oo, the last term becomes smaller and smal ler- leaving the 
correct recursion relation for G~.  

We now give a bound on the size of accessible attractors. We do this 
by showing that these attractors are almost all of the same size. Then the 
bound simply follows from dividing the total input space 2 N by the total 
number of attractors [(1 + ~/5)/2] f. The argument is as follows. First, one 
can convince oneself that the size of the attractors depends on the 
correlation functions of the si only. If one can prove that the distribution of 
the si in the set of accessible attractors is self-averaging, then almost all 
members of this set will exhibit the correlations characteristic of the 
distribution. This would imply that almost all accessible atractors (up to a 
set of zero measure) indeed have the same size. To prove self-averaging, we 
show that the quantity 

N--- 5 s~ - si 

decreases as i /N  for large N. This follows from the fact that the si have 
short-range correlations only. In particular, while s~, se+l, and s~+2 are 
correlated, s~ and si+j, i> 3, are uncorrelated. The point is that for given si 
and s+3, any local configuration in input that leads to a segment of 
length s i will restrict si+_l and si• but not s~_+3, and thus s~ and s~_+3 are 
independent. Consider, e.g., the case s i=  3. There are three local input 
configurations that lead with certainty to a substring i consisting of 3 ones, 
namely 

{0011100}, {000101100}, and {00110100} 

These local configurations put some restrictions on si+1 and s~ 1. For 
example, the second configuration restricts si_l to be at least 3 (so it 
cannot be 2) and the third one does the same thing for Si+l. Both con- 
figurations prevent s~+~ and s, i from being equal to 2 simultaneously. 
Thus, correlations exist linking nearest and next nearest neighbors. On the 
other hand, there are no restrictions linking s~ and si+i, l Jr/> 3, that is, 

(sise+j) = <si)(se+j) ,  Ijl/>3 

Therefore, almost all accessible attractors have the same correlation 
functions, and thus the same size. It follows that the size of accessible 
attractors is >~ [4/(1 + ,,/'5)1N. 
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4. E R R O R - C O R R E C T I N G  PROPERTIES; D Y N A M I C S  

In applications concerned with artificial intelligence or evolutionary 
biology, the question of error sensitivity plays an essential role. For 
instance, if a machine is used in a pattern recognition context, sensitivity of 
the output string to input perturbations---e.g., bit "upsets" or inversions--is 
of primary importance in engineering considerations. 

This sensitivity can be measured in the following convenient way. 
Consider a given machine, with a given initial input, to which a certain 
output corresponds. Assume now that the input is subjected to random bit 
upsets. The question we ask is: what is the probability that, if there are a 
bit inversions per unit time (the effect of which propagate instantaneously 
to the output), the output at time t is identical with output at time 0? This 
we call the autocorrelation function for this given output. It may seem that 
this is a complicated way to explore the phase space of the system, i.e., of 
mapping its attractors; however, a direct mapping is difficult in a 2 N- 

dimensional discrete space such as the one we are dealing with; further- 
more, the interrelations between attractors are complex. Thus, if we look at 
an N x M = 12 x 8 machine with all-0 boundary conditions, we observe that 
minor changes in the input configurations may lead to a change of the out- 
put. For example, there are 492 points in input space--out of a total of 
212--for which any change in a single bit will result in a change of the out- 
put. Thus, the picture in phase space is, it would seem, intractable unless 
we adopt some form of statistical search. 

Simple cellular computers such as the majority machine can amplify 
the effect of correlations to an enormous extent. Unless these amplification 
effects remain isolated accidents, they do not bode well for the future of 
approximations that neglect either all correlations (see below) or even only 
some higher order correlations. Let us first evaluate some of the consequen- 
ces of neglecting correlations altogether. Computing the 1-bit auto- 
correlation function is then easy indeed. Let us consider an input bit first; if 
the probability per unit time that this bit be upset is a, then the probability 
for the bit in question to have retained (or regained) its initial value at time 
t is the solution of 

dPo/dt = (1 - a)Po + a(1 - Po) (15) 

with P0(0) = 1, where the subscript 0 denotes layer 0 of the machine. Thus, 

Po = �89 + e-2"') (16) 

We assume that all bits in input are upset with independent probabilities. 
Then we may evaluate simply P1, the autocorrelation of a bit in layer 1. 
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For, if only one bit in a given input triplet is upset, then the chance is 7/2 
that this upset has not changed the majority in the triplet; if two bits are 
upset, then again the probability is 7/2 that this has not led to a change in 
majority; while if all three bits were inverted, the majority has clearly 
changed. And so: 

\ 

p, = p ~ +  3 2 3po(1 _ (77) ~Po( 1 -- Po) + Po) 2 

This is an exact result. Now if all bit triplets at level 1 were changing 
independently of one another, all that one would have to do to get Pn 
would be to iterate (17). But this gives the nonsensical result that Pi-~ 7/2 
when i ~  oo at any finite time, that is, each and every bit in output is 
randomized after even one inversion in input! Clearly, then, neglecting 
correlations is strictly meaningless. Let us now formulate the problem in 
terms general enough that useful aproximations will later be possible. 

4.1. Formal Results 

Let us consider an N x  M machine. As a function of time, inversions 
are occurring in its input string at a rate a. At time t, the probability P(R) 
that the number of inversions relative to the initial input is R will be given 
by 

P[R(t)] =(NR) (1- Po)RP~ -R (18) 

where P0 is as defined in (76). If at t = 0 input was Io and output O0, at 
time t output will still be Oo with a probability 

N 

pU(Io)= ~ P[R] f,o(R) (19) 
R ~ 0  

with f~o(R) the "density" of the O o attractor around its point Io, i.e., the 
number of input strings at Hamming distance R from Io that still flow to 
O o, divided by the total number of strings at that distance. Let us rewrite 
(18) and (19), scaling variables so that r = R/N, taking N and R large; then 

f2 P~t(lo)~- exp{N[-rlnr--(1 --r) ln(1--r)  

+rln(1-Po)+(1-r)lnPo+lnFro(r)]}dr (20) 

where we have assumed that f is of the scaling form (7b). The integrand in 
(20) thus assumes a form suitable for a saddle-point approximation in the 
limit of large N. We now perform the calculation explicitly for particular 
c a s e s .  
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4.2. Autocorre la t ion  for the {000 . . . 000 }  A t t rac tor  

To use (20) concretely, one must be able to specify F~0. This will be 
done here for several cases. We first take Oo = {000...000}, M ~ oe. Using 
the techniques illustrated in Section 3.2, one can easily determine the 
characteristics of a typical input Io leading to this attractor. The input will 
consist of isolated ones separated by segments comprising si zeros each. 
The number nj of segments of length l can be seen to obey the distribution 

3 - , 5  

The total number of segments L is 

L = N - -  5-,5 
10 

(22) 

Now, the density f~oo..,oo~ of the all-0 attractor around a typical input I0 is 
given by the ratio of the number X of inversions in R bits that lead to other 
points inside the attractor, to the total number of possible ways of 
inverting R bits, i.e., (~). Assuming a small overall density of inversions, so 
that no "interactions" between neighboring inversions must be considered, 
the places where inversions are allowed in I0 are (i) the L locations where a 
1 exists; and (ii) the l -  2 locations inside a segment of I zeros. 

Thus, 

X = L +  ~ n~(I-2)  (23) 
l ~ 3  

Using the distribution (21), X is easily evaluated: 

1+`5 X = N - -  - K N  

It is then not difficult to see that for small R/N, 

fl0{00...00} ~- K R = K rN 

(24) 

(25) 

with r = R/N. We now insert this expression fl0 in (20) and perform a 
saddle point approximation. The saddle point equation is 

r 1 -- Po 
l n l _ r - l n  Po + l n K = 0  
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and, for r small, r ~- (a/K)t. Reinserting this in (20), we get 

l - K )  
P~({00. . .00} -~exp - N a ~  t 

The exponent Na(1 - K ) / K  is less than Na (the corresponding exponent for 
the input correlation function), reflecting the error correction properties of 
the machine. 

We now consider fI0{00...00} for atypical inputs. For example, we 
examine the case I0 = {00...00}. At a Hamming distance R from I0, the 
representative input string has, at each site, a 1 with probability r; if we 
take r ,~ 1, then the probability of finding a pair of l's at a given location is 
r 2, and the occurrence of such pair is the most probable event that would 
destroy output 0o. The probability that a given input bit pair is compatible 
with 0o is thus roughly 1 - r 2, and all pairs will be such with a probability 

f{ooo...ooo~(r) ~-(1 - r 2 )  N l_~ (1 - r Z )  N (26) 

(in the limit of N large). This is of the scaling form (7), and (20) then 
becomes 

P~({000. . .000} 

,~ e x p { N [ - r l n r - ( 1  - r) ln(1 - r )  

+ r l n ( 1 - P o ) + ( 1 - r ) l n P o + l n ( 1 - r 2 ) ] } d r  (27) 

We now take N--+ co and evaluate (27) by the saddle-point method. The 
saddle-point equation is 

r 1 -- Po 2r 
- In l --  r + In - - p o  1 - - -  r 2  = 0 (28)  

which becomes, with (16), 

2r  
r + ln  tgh at = - -  (29) 

- l n  l - r  1 - - r  2 

For short times and small r, this reduces to r ~- at, which, when substituted 
in (27), yields 

P ~ ( { 0 0 0 . . . 0 0 0  }, t) -~ (1 - a Z t 2 )  u ~ exp( - N a 2 t  2) (short times) (30) 

This Gaussian form is well confirmed by computer simulations (see Fig. 5). 
Note that, had we considered automata computing the majority of, say, 
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Fig. 5. Plot of (log P)/t, where P is the probability that, starting from an all-0 input and 
proceeding in t i m e  with bit inversions, the output remains all-0 for an N =  100, M =  ov 
machine. The dependence expected is a Gaussian [Eq. (30)]. In the units used, we expect a 
straight line starting at (0, 0) and slope-l. This is well verified at short times. 

five bits instead of three, the critical input fluctuation would then have 
consisted of triplets of l's, and the autocorrelation decay would then have 
proceeded as exp(-t3). 

In the limit t ~ oo, (29) can again be solved and yields r =0.3236; sub- 
stituting in (20) results in P~({000...000}, oo)~(0.8401) u. This is in 
reasonable agreement with the exact result ( 0 . 8 0 9 0 )  N [derived from (13)], 
despite the crudeness of our approximations. 

5. C O N C L U S I O N S  

We have studied the behavior of extremely simple regular computing 
networks. We have calculated the statistical structure of both input and 
output spaces. The machine maps most of its input space into an atypical, 
measure-zero subset of its output space. Error correction capacity is obser- 
ved, based on a number of rather complicated effects resulting from the 
surprising dependence of these networks on input correlations. It should 
prove very instructive to extend our work in a variety of directions; one 
can, for example, imagine networks where thresholds (here fixed) would 
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vary (say randomly) from automaton to automaton, perhaps in some 
adaptive way. It would also be interesting to study longer range interac- 
tions. Finally, the networks considered to not involve feedback: clearly, the 
possibility of backpropagation effects could lead to dramatic consequences 
as far as network dynamics is concerned. 
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